Messages de Peutetrebienfan

Le 16 octobre 2022 à 23:59:09 :
C'était quoi cette merde ?

je sais pas, c'est quoi à ton avis ? :(

Le 16 octobre 2022 à 23:58:29 :
Cliquez pas

C EST YOUTUBE

c'est safehttps://image.noelshack.com/fichiers/2016/30/1469541952-risitas182.png

vous risquez de bander par contrehttps://image.noelshack.com/fichiers/2018/10/1/1520256134-risitasue2.png

In angiosperms, after the pollen grain (gametophyte) has landed on the stigma, it germinates and develops a pollen tube which grows down the style until it reaches an ovary. Its two gametes travel down the tube to where the gametophyte(s) containing the female gametes are held within the carpel. After entering an ovum cell through the micropyle, one male nucleus fuses with the polar bodies to produce the endosperm tissues, while the other fuses with the ovule to produce the embryo.[2][3] Hence the term: "double fertilization". This process would result in the production of a seed made of both nutritious tissues and embryo.

In gymnosperms, the ovule is not contained in a carpel, but exposed on the surface of a dedicated support organ, such as the scale of a cone, so that the penetration of carpel tissue is unnecessary. Details of the process vary according to the division of gymnosperms in question. Two main modes of fertilization are found in gymnosperms. Cycads and Ginkgo have motile sperm that swim directly to the egg inside the ovule, whereas conifers and gnetophytes have sperm that are unable to swim but are conveyed to the egg along a pollen tube.

The study of pollination spans many disciplines, such as botany, horticulture, entomology, and ecology. The pollination process as an interaction between flower and pollen vector was first addressed in the 18th century by Christian Konrad Sprengel. It is important in horticulture and agriculture, because fruiting is dependent on fertilization: the result of pollination. The study of pollination by insects is known as anthecology. There are also studies in economics that look at the positives and negatives of pollination, focused on bees, and how the process affects the pollinators themselves. In angiosperms, after the pollen grain (gametophyte) has landed on the stigma, it germinates and develops a pollen tube which grows down the style until it reaches an ovary. Its two gametes travel down the tube to where the gametophyte(s) containing the female gametes are held within the carpel. After entering an ovum cell through the micropyle, one male nucleus fuses with the polar bodies to produce the endosperm tissues, while the other fuses with the ovule to produce the embryo.[2][3] Hence the term: "double fertilization". This process would result in the production of a seed made of both nutritious tissues and embryo.

In gymnosperms, the ovule is not contained in a carpel, but exposed on the surface of a dedicated support organ, such as the scale of a cone, so that the penetration of carpel tissue is unnecessary. Details of the process vary according to the division of gymnosperms in question. Two main modes of fertilization are found in gymnosperms. Cycads and Ginkgo have motile sperm that swim directly to the egg inside the ovule, whereas conifers and gnetophytes have sperm that are unable to swim but are conveyed to the egg along a pollen tube.

The study of pollination spans many disciplines, such as botany, horticulture, entomology, and ecology. The pollination process as an interaction between flower and pollen vector was first addressed in the 18th century by Christian Konrad Sprengel. It is important in horticulture and agriculture, because fruiting is dependent on fertilization: the result of pollination. The study of pollination by insects is known as anthecology. There are also studies in economics that look at the positives and negatives of pollination, focused on bees, and how the process affects the pollinators themselves. In angiosperms, after the pollen grain (gametophyte) has landed on the stigma, it germinates and develops a pollen tube which grows down the style until it reaches an ovary. Its two gametes travel down the tube to where the gametophyte(s) containing the female gametes are held within the carpel. After entering an ovum cell through the micropyle, one male nucleus fuses with the polar bodies to produce the endosperm tissues, while the other fuses with the ovule to produce the embryo.[2][3] Hence the term: "double fertilization". This process would result in the production of a seed made of both nutritious tissues and embryo.

In gymnosperms, the ovule is not contained in a carpel, but exposed on the surface of a dedicated support organ, such as the scale of a cone, so that the penetration of carpel tissue is unnecessary. Details of the process vary according to the division of gymnosperms in question. Two main modes of fertilization are found in gymnosperms. Cycads and Ginkgo have motile sperm that swim directly to the egg inside the ovule, whereas conifers and gnetophytes have sperm that are unable to swim but are conveyed to the egg along a pollen tube.

The study of pollination spans many disciplines, such as botany, horticulture, entomology, and ecology. The pollination process as an interaction between flower and pollen vector was first addressed in the 18th century by Christian Konrad Sprengel. It is important in horticulture and agriculture, because fruiting is dependent on fertilization: the result of pollination. The study of pollination by insects is known as anthecology. There are also studies in economics that look at the positives and negatives of pollination, focused on bees, and how the process affects the pollinators themselves. In angiosperms, after the pollen grain (gametophyte) has landed on the stigma, it germinates and develops a pollen tube which grows down the style until it reaches an ovary. Its two gametes travel down the tube to where the gametophyte(s) containing the female gametes are held within the carpel. After entering an ovum cell through the micropyle, one male nucleus fuses with the polar bodies to produce the endosperm tissues, while the other fuses with the ovule to produce the embryo.[2][3] Hence the term: "double fertilization". This process would result in the production of a seed made of both nutritious tissues and embryo.

In gymnosperms, the ovule is not contained in a carpel, but exposed on the surface of a dedicated support organ, such as the scale of a cone, so that the penetration of carpel tissue is unnecessary. Details of the process vary according to the division of gymnosperms in question. Two main modes of fertilization are found in gymnosperms. Cycads and Ginkgo have motile sperm that swim directly to the egg inside the ovule, whereas conifers and gnetophytes have sperm that are unable to swim but are conveyed to the egg along a pollen tube.

The study of pollination spans many disciplines, such as botany, horticulture, entomology, and ecology. The pollination process as an interaction between flower and pollen vector was first addressed in the 18th century by Christian Konrad Sprengel. It is important in horticulture and agriculture, because fruiting is dependent on fertilization: the result of pollination. The study of pollination by insects is known as anthecology. There are also studies in economics that look at the positives and negatives of pollination, focused on bees, and how the process affects the pollinators themselves.

Sexual reproduction is a process exclusive to eukaryotes in which organisms produce offspring that possess a selection of the genetic traits of each parent. Genetic traits are contained within the deoxyribonucleic acid (DNA) of chromosomes. The cells of eukaryotes have a set of paired homologous chromosomes, one from each parent, and this double-chromosome stage is called "diploid". During sexual reproduction, diploid organisms produce specialized haploid sex cells called gametes via meiosis,[8] each of which has a single set of chromosomes. Meiosis involves a stage of genetic recombination via chromosomal crossover, in which regions of DNA are exchanged between matched pairs of chromosomes, to form new chromosomes each with a new and unique combination of the genes of the parents. Then the chromosomes are separated into single sets in the gametes. Each gamete in the offspring thus has half of the genetic material of the mother and half of the father.[9] The combination of chromosomal crossover and fertilization, bringing the two single sets of chromosomes together to make a new diploid zygote, results in new organisms that contain different sets of the genetic traits of each parent.

In animals, the haploid stage only occurs in the gametes, the haploid cells that are specialized to fuse to form a zygote that develops into a new diploid organism. In plants, the diploid organism produces haploid spores by meiosis that are capable of undergoing repeated cell division to produce multicellular haploid organisms. In either case, gametes may be externally similar (isogamy) as in the green alga Ulva or may be different in size and other aspects (anisogamy).[10] The size difference is greatest in oogamy, a type of anisogamy in which a small, motile gamete combines with a much larger, non-motile gamete.[11]

By convention, the larger gamete (called an ovum, or egg cell) is considered female, while the smaller gamete (called a spermatozoon, or sperm cell) is considered male. An individual that produces exclusively large gametes is female, and one that produces exclusively small gametes is male.[12] An individual that produces both types of gametes is a hermaphrodite. In some cases hermaphrodites are able to self-fertilize and produce offspring on their own, without the need of a partner. Sexual reproduction is a process exclusive to eukaryotes in which organisms produce offspring that possess a selection of the genetic traits of each parent. Genetic traits are contained within the deoxyribonucleic acid (DNA) of chromosomes. The cells of eukaryotes have a set of paired homologous chromosomes, one from each parent, and this double-chromosome stage is called "diploid". During sexual reproduction, diploid organisms produce specialized haploid sex cells called gametes via meiosis,[8] each of which has a single set of chromosomes. Meiosis involves a stage of genetic recombination via chromosomal crossover, in which regions of DNA are exchanged between matched pairs of chromosomes, to form new chromosomes each with a new and unique combination of the genes of the parents. Then the chromosomes are separated into single sets in the gametes. Each gamete in the offspring thus has half of the genetic material of the mother and half of the father.[9] The combination of chromosomal crossover and fertilization, bringing the two single sets of chromosomes together to make a new diploid zygote, results in new organisms that contain different sets of the genetic traits of each parent.

In animals, the haploid stage only occurs in the gametes, the haploid cells that are specialized to fuse to form a zygote that develops into a new diploid organism. In plants, the diploid organism produces haploid spores by meiosis that are capable of undergoing repeated cell division to produce multicellular haploid organisms. In either case, gametes may be externally similar (isogamy) as in the green alga Ulva or may be different in size and other aspects (anisogamy).[10] The size difference is greatest in oogamy, a type of anisogamy in which a small, motile gamete combines with a much larger, non-motile gamete.[11]

By convention, the larger gamete (called an ovum, or egg cell) is considered female, while the smaller gamete (called a spermatozoon, or sperm cell) is considered male. An individual that produces exclusively large gametes is female, and one that produces exclusively small gametes is male.[12] An individual that produces both types of gametes is a hermaphrodite. In some cases hermaphrodites are able to self-fertilize and produce offspring on their own, without the need of a partner. Sexual reproduction is a process exclusive to eukaryotes in which organisms produce offspring that possess a selection of the genetic traits of each parent. Genetic traits are contained within the deoxyribonucleic acid (DNA) of chromosomes. The cells of eukaryotes have a set of paired homologous chromosomes, one from each parent, and this double-chromosome stage is called "diploid". During sexual reproduction, diploid organisms produce specialized haploid sex cells called gametes via meiosis,[8] each of which has a single set of chromosomes. Meiosis involves a stage of genetic recombination via chromosomal crossover, in which regions of DNA are exchanged between matched pairs of chromosomes, to form new chromosomes each with a new and unique combination of the genes of the parents. Then the chromosomes are separated into single sets in the gametes. Each gamete in the offspring thus has half of the genetic material of the mother and half of the father.[9] The combination of chromosomal crossover and fertilization, bringing the two single sets of chromosomes together to make a new diploid zygote, results in new organisms that contain different sets of the genetic traits of each parent.

In animals, the haploid stage only occurs in the gametes, the haploid cells that are specialized to fuse to form a zygote that develops into a new diploid organism. In plants, the diploid organism produces haploid spores by meiosis that are capable of undergoing repeated cell division to produce multicellular haploid organisms. In either case, gametes may be externally similar (isogamy) as in the green alga Ulva or may be different in size and other aspects (anisogamy).[10] The size difference is greatest in oogamy, a type of anisogamy in which a small, motile gamete combines with a much larger, non-motile gamete.[11]

By convention, the larger gamete (called an ovum, or egg cell) is considered female, while the smaller gamete (called a spermatozoon, or sperm cell) is considered male. An individual that produces exclusively large gametes is female, and one that produces exclusively small gametes is male.[12] An individual that produces both types of gametes is a hermaphrodite. In some cases hermaphrodites are able to self-fertilize and produce offspring on their own, without the need of a partner.

CASH ?https://image.noelshack.com/fichiers/2018/29/6/1532128784-risitas33.png

https://image.noelshack.com/fichiers/2017/39/3/1506524542-ruth-perplexev2.png

PARCE QUE MII OUIhttps://image.noelshack.com/fichiers/2018/26/7/1530476579-reupjesus.png

ça
.
.
.
.
.
vous
.
.
.
fais
.
.
.
.
.

.
..
.
.perdre
du

.
.
.
.
..

...

.TEMPS ?

J'aime
.
Mettre
.
des.
Points
.
entre
.
.
.
.
Les
.
.
.
.
ligneshttps://image.noelshack.com/fichiers/2018/29/6/1532128784-risitas33.png

Le 16 octobre 2022 à 23:38:41 :
https://image.noelshack.com/fichiers/2017/19/1494343590-risitas2vz-z-3x.png

Bonjour, Steinheiz
.
Comment te sens-tu quand tu regardes cette vidéo ?
.
Détendue ?https://image.noelshack.com/fichiers/2017/39/3/1506524542-ruth-perplexev2.png

Le 16 octobre 2022 à 23:39:01 :
à chaque talc j'me dit que cette fois il a peter un câble à et qu'il a fini en couv' des faits divershttps://image.noelshack.com/fichiers/2022/37/1/1663014384-ahi-pince-mais.png

Pourquoi j'irais en couv' des faits divers ?https://image.noelshack.com/fichiers/2018/29/6/1532128784-risitas33.png
Je suis un homme tout a fait respectable et respecté par toushttps://image.noelshack.com/fichiers/2018/29/6/1532128784-risitas33.pnghttps://image.noelshack.com/fichiers/2018/18/7/1525629024-risitas-isse-monocle.png

moi je ne leche que par terre.
.
.
C'est comme ça;
.
.
JE Suis un homme qui a des principes
.
.
des valeurs, vous voyez ?
vous aimez lècher ?

le mieux c'est la fin

quand je lèche le sol

https://image.noelshack.com/fichiers/2022/26/5/1656694548-mickey-qui-bedave-pour-oublier.pngsavourez

:bave:

POURQUOI VOUS VOUS SENTEZ OBLIGE DE DDB ?https://image.noelshack.com/fichiers/2017/39/3/1506524542-ruth-perplexev2.png

Le 16 octobre 2022 à 23:30:34 :
https://image.noelshack.com/fichiers/2017/12/1490302379-risitas.png

RENTRE MOI CA DANS LA BOUCHE

OUI

VASY :bave:

CA C EST MON HERO :oui:

Le 16 octobre 2022 à 23:29:51 :
Je malaise :)

https://image.noelshack.com/fichiers/2016/30/1469541952-risitas182.png
TU NE TE BRANLES PAS ?https://image.noelshack.com/fichiers/2016/30/1469541952-risitas182.png
POURQUOI ?https://image.noelshack.com/fichiers/2016/30/1469541952-risitas182.png