[MATHS] Question Probabilité et mesures

tausendjahriges
2020-12-27 18:36:25

Une probabilité étant une mesure dont la mesure de l'espace est égal à 1, les propriétés d'une probabilité s'appliquent-elle pour une mesure?

Par exemple la propriété des probabilités composées P(inter(An)) = P(A1) pour n E N s'applique t-elle aussi pour les mesures?

ahlesgateaux
2020-12-27 18:40:46

P(inter(An)) = P(A1)

Cette égalité est fausse à moins que tu la précises
Et en théorie de la mesure il y a une égalité qui y ressemble, mais va falloir préciser !

tausendjahriges
2020-12-27 18:43:10

Le 27 décembre 2020 à 18:40:46 ahlesgateaux a écrit :
P(inter(An)) = P(A1)

Cette égalité est fausse à moins que tu la précises
Et en théorie de la mesure il y a une égalité qui y ressemble, mais va falloir préciser !

Peut être c'est ma notation qui est incompréhensible voilà un dessin plus compréhensible

http://sketchtoy.com/69449434

D'ailleurs tant que tu es là tu peux m'expliquer ce qu'est la tribu P(N) stp (la tribu usuelle des parties de N tout le monde en parle mais j'ai jamais vu la construction :( )

ahlesgateaux
2020-12-27 18:44:16

Le 27 décembre 2020 à 18:43:10 Tausendjahriges a écrit :

Le 27 décembre 2020 à 18:40:46 ahlesgateaux a écrit :
P(inter(An)) = P(A1)

Cette égalité est fausse à moins que tu la précises
Et en théorie de la mesure il y a une égalité qui y ressemble, mais va falloir préciser !

Peut être c'est ma notation qui est incompréhensible voilà un dessin plus compréhensible

http://sketchtoy.com/69449434

What bien sûr que c'est faux, tu lances une pièce
Probabilité d'avoir un pile (A1) et un face (A2) = 0
Probabilité d'avoir un pile = 1/2

Kerotroll
2020-12-27 18:44:23

Le 27 décembre 2020 à 18:43:10 Tausendjahriges a écrit :

Le 27 décembre 2020 à 18:40:46 ahlesgateaux a écrit :
P(inter(An)) = P(A1)

Cette égalité est fausse à moins que tu la précises
Et en théorie de la mesure il y a une égalité qui y ressemble, mais va falloir préciser !

Peut être c'est ma notation qui est incompréhensible voilà un dessin plus compréhensible

http://sketchtoy.com/69449434

Mais ça c'est faux, sauf si la suite des (An) est croissante au sens de l'inclusion

ahlesgateaux
2020-12-27 18:45:48

Le 27 décembre 2020 à 18:44:23 Kerotroll a écrit :

Le 27 décembre 2020 à 18:43:10 Tausendjahriges a écrit :

Le 27 décembre 2020 à 18:40:46 ahlesgateaux a écrit :
P(inter(An)) = P(A1)

Cette égalité est fausse à moins que tu la précises
Et en théorie de la mesure il y a une égalité qui y ressemble, mais va falloir préciser !

Peut être c'est ma notation qui est incompréhensible voilà un dessin plus compréhensible

http://sketchtoy.com/69449434

Mais ça c'est faux, sauf si la suite des (An) est croissante au sens de l'inclusion

+1 et pour le coup ça a rien avoir avec probabilité et mesure, tu prends n'importe quelle fonction sur P(Omega) bah si A1 C ... C An alors A1 inter .... An = A1 et donc f(A1 inter .... An ) = f(A1)

Paramei
2020-12-27 18:46:00

Mais sinon reprends la preuve et tu verras bien si tu utilises le fait que la masse vaut 1 ou pashttps://image.noelshack.com/fichiers/2017/15/1491851452-villani-zepo.png

DonDoritos17
2020-12-27 18:46:53

Le 27 décembre 2020 à 18:43:10 Tausendjahriges a écrit :

Le 27 décembre 2020 à 18:40:46 ahlesgateaux a écrit :
P(inter(An)) = P(A1)

Cette égalité est fausse à moins que tu la précises
Et en théorie de la mesure il y a une égalité qui y ressemble, mais va falloir préciser !

Peut être c'est ma notation qui est incompréhensible voilà un dessin plus compréhensible

http://sketchtoy.com/69449434

D'ailleurs tant que tu es là tu peux m'expliquer ce qu'est la tribu P(N) stp (la tribu usuelle des parties de N tout le monde en parle mais j'ai jamais vu la construction :( )

C'est faux cette formule à moins que chaque A_i = A_1 p.s. ou croissance de la suite :(
Éventuellement tu as P(intersection des A_n) = lim P(A_n) si A_n est une suite décroissante d'événements.
Ça marche encore avec une mesure générale si l'un des A_i est de mesure finie.

tausendjahriges
2020-12-27 18:47:36

Oui vous avez raison sur le dessin y'a pas d'inter avant An, c'est A1 inter tout le reste merci

unserious
2020-12-27 18:50:47

Non. Une probabilité est un cas particulier de la mesure (une mesure d'intégrale 1) donc en générale ses propriétés ne s'appliquent pas aux mesures en général.

Le 27 décembre 2020 à 18:46:00 paramei a écrit :
Mais sinon reprends la preuve et tu verras bien si tu utilises le fait que la masse vaut 1 ou pashttps://image.noelshack.com/fichiers/2017/15/1491851452-villani-zepo.png

ça résume bien le procédé

Infos
Gestion du forum

contact@geevey.com

API disponible. Utilisez le paramètre "api" en GET, peu importe le contenu, sur une page du site.

Notes

    Partenaire: JVFlux
    Ce site n'est pas associé à Jeuxvideo.com ou Webedia. Nous utilisons seulement des archives publiques.
    Il est inutile de me spammer par e-mail pour supprimer un topic. Au contraire, en conséquence, je mettrais votre topic dans le bloc ci-dessous.
Non-assumage
    Personne n'a pas assumé de topic pour le moment.